Lesson:
 \qquad Section: 8.1

Using the Definite Integral to Calculate Areas \& Volumes (Slice Method)

In chapter 5, we calculated areas using definite integrals. We obtained the integral by slicing a region up into rectangles and then summing up all the slices using a Riemann Sum. By taking the limit as
$n \rightarrow \infty$, we were able to find the exact value of the area.

We are now going to calculate VOLUME in a similar fashion using "The Slice Method."

Use a definite integral to find the area.

Imagine slicing the triangle horizontally, and then summing up all the slices.

Area of one slice everything in terms of one variable. Let's get win terms of h.

$$
\begin{aligned}
& \frac{w_{i}}{10}=\frac{5-h_{i}}{5} \\
& w_{i}=2\left(5-h_{i}\right) \\
& w_{i}=10-2 h_{i}
\end{aligned}
$$

Find a relationship between the variables (usually geometry)

We have now modeled the area of the slice using only one variable

Area of

 one slice$$
\approx\left(10-2 h_{i}\right) \Delta h
$$

Area of the triangle

$$
\approx \sum_{i=1}^{n}\left(10-2 h_{i}\right) \Delta h
$$

To find the area of the triangle, let's just sum up all these little slices!

Now, take the limit as $n \rightarrow \infty$ (or as $\Delta h \rightarrow 0$) and we get...

$$
\begin{aligned}
& \underset{\text { the triangle }}{\text { Area of }}=\int_{0}^{5}(\mathbf{1 0}-\mathbf{2 h}) d h \\
& \left(10 h-h^{2}\right]_{0}^{5}=[50-25]-[0-0] \\
& =25 \mathrm{~cm}^{2}
\end{aligned}
$$

Use a definite integral to find the area.

Imagine slicing the triangle horizontally, and then summing up all the slices.

Area of one slice

Now, we'd like to to express everything in terms of one variable. Let's get win terms of h.

$$
\begin{aligned}
& \frac{w_{i}}{10}=\frac{5-h_{i}}{5} \\
& w_{i}=2\left(5-h_{i}\right) \\
& w_{i}=10-2 h_{i}
\end{aligned}
$$

Find a relationship between the variables (usually geometry)

We have now modeled the area of the slice using only one variable

Area of

 one slice$$
\approx\left(10-2 h_{i}\right) \Delta h
$$

Area of the triangle

$$
\approx \sum_{i=1}^{n}\left(10-2 h_{i}\right) \Delta h
$$

To find the area of the triangle, let's just sum up all these little slices!

Now, take the limit as $n \rightarrow \infty$ (or as $\Delta h \rightarrow 0$) and we get...

$$
\begin{aligned}
& \underset{\text { the triangle }}{\text { Area of }}=\int_{0}^{5}(\mathbf{1 0}-\mathbf{2 h}) d h \\
& \left(10 h-h^{2}\right]_{0}^{5}=[50-25]-[0-0] \\
& =25 \mathrm{~cm}^{2}
\end{aligned}
$$

Use a definite integral to find volume of the cone.

Each slice is a circular disk like a coin.
\leftarrow 3D Homer

Volume of $\approx \pi r^{2} \Delta h$ one slice

Now, we'd like to express everything in terms of one variable. Let's get r in terms of h.

$$
r=\frac{1}{2} w=\frac{1}{2}(10-2 h)=5-h
$$

Volume of one slice

To find the volume of the cone, let's just sum up all these little slices (using a definite integral)!

$$
\begin{aligned}
\substack{\text { Volume of } \\
\text { the cone }} & =\int_{0}^{5} \pi(5-h)^{2} \boldsymbol{d} \boldsymbol{h} \\
& \left.=\frac{\pi}{3}(5-h)^{3}\right]_{0}^{5}=(0)-\left(\frac{-125 \pi}{3}\right) \\
& =\frac{125 \pi}{3} \mathrm{~cm}^{3}
\end{aligned}
$$

Use a definite integral to find the area.

$h^{2}+\left(\frac{w}{2}\right)^{2}=7^{2}$

$$
\left(\frac{w}{2}\right)^{2}=49-h^{2}
$$

$$
w=2 \sqrt{49-h^{2}}
$$

$\underset{\text { one slice }}{\text { Area of }}=w \Delta h$ Now, express everything in terms of one variable. Let's get win terms of h.

$$
\begin{gathered}
\text { Area of } \\
\text { one slice }
\end{gathered}=\left(2 \sqrt{49-h^{2}}\right) \Delta h
$$

$$
\underset{\text { Area of the }}{\text { semi-circle }}=\int_{0}^{7} 2 \sqrt{49-h^{2}} d h
$$

Use the calculator!

$$
\begin{gathered}
\text { Area of the } \\
\text { semi-circle }
\end{gathered} \approx 76.969 \mathrm{~cm}^{2}
$$

Use a definite integral to find volume of the hemisphere.

vertical cross-section

$h^{2}+r^{2}=7^{2}$
$r^{2}=49-h^{2}$
$r=\sqrt{49-h^{2}}$
$\underset{\text { one slice }}{\text { Volume of }}=\pi r^{2} \Delta h$

$$
\begin{aligned}
\begin{array}{c}
\text { Volume of } \\
\text { one slice }
\end{array} & =\pi\left(\sqrt{49-h^{2}}\right)^{2} \Delta h \\
& =\pi\left(49-h^{2}\right) \Delta h
\end{aligned}
$$

$$
\underset{\text { the Solid }}{\text { Volume of }}=\int_{0}^{7} \pi\left(49-h^{2}\right) d h
$$

$$
\pi\left[49 h-\frac{h^{3}}{3}\right]_{0}^{7}=(343 \pi)-\left(\frac{343 \pi}{3}\right)
$$

$$
\underset{\substack{\text { Volume of } \\ \text { the solid }}}{ } \approx 718.378 \mathrm{~cm}^{3}
$$

Warmup

Find the area of the washer if the hole has a diameter of 2 and the washer has a diameter of 6 .

To Compute a Volume Using an Integral

- Divide the solid into small pieces whose volume we can easily approximate
- Add the contributions of all the pieces, obtaining a Riemann sum that approximates the total volume
- Take the limit as the number of terms in the sum tends to infinity, giving a definite integral for the total volume.

So we model the volume of one slice, then use an integral to accumulate the slices!

Solids of Revolution

http://demonstrations.wolfram.com/SolidsOfRevolution/
Wolfram Solids of Revolution, 2 examples that I can spin the 3d graph and look

Ex. Take the region bounded by the curve $y=\sqrt{x}, y=0$, and $x=4$ and revolve it around the x-axis. Find the volume of the resulting solid.

$$
\begin{aligned}
& \text { Volume of } \\
& \text { a cylinder } \\
& =\pi \int_{0}^{4}(x) d x \\
& =\pi\left[\frac{1}{2} x^{2}\right] \begin{array}{l}
4 \\
0
\end{array} \\
& =\pi[8-0]=8 \pi \text { units }^{3}
\end{aligned}
$$

Ex. Take the region bounded by the curve $y=x^{3}, y=0$, and $x=0$, and $y=8$ and revolve it around the y-axis. Find the volume of the resulting solid.

Ex. Take the region bounded by the curve $y=x^{2}$ and $y=2 x$. and revolve it around the x-axis. Find the volume of the resulting solid.

Visualizing the "Washer Method" | video |
| :---: |
| zosec |

Volumes of Solids of Revolution:
The "Washer Method"

http://demonstrations.wolfram.com/SolidOfRevolution/
Nice interactive solid of revolution for a difference of two generic functions (below)

1. Write an integral to represent the volume of the solid formed by revolving the region around the x-axis.

$$
\int_{a}^{b} \pi\left(f(x)^{2}-g(x)^{2}\right) d x
$$

2. What if we decided to revolve it around the y-axis? Would washers still work? If not, how could we approach this?

The Shell $\mathbb{M e t h o d ~}$

Find the volume of the solid formed by rotating about the y axis the region bounded by $y=x^{2}$ and $y=\sqrt{x}$

http://www.math.tamu.edu/~tkiffe/calc3/revolution2/revolution2.html I can animate these to demo what the disc and shell method are doing.

$2 \pi r$
$V=\int_{0}^{1} 2 \pi r\left(x_{1}-x_{2}\right) d y$

Shells Worksheet
1.) Use elements parallel to the axis of revolution (that is, use "shells") to find the volume of the solid generated by revolving about the y-axis the region bounded by $y=x^{2}, x=2$, and the x-axis.

Shells Worksheet

2.) Use shells to find the volume of the solid generated by revolving about the line $x=4$ the region bounded by $y=x^{3}$ and the lines $y=0$ and $x=2$.

Solids with Known Cross-Sections

http://demonstrations.wolfram.com/SolidsOfKnownCrossSection/ Visualizing solids with known cross sections

Ex. Find the volume of the solid whose base is the region in the xy-plane bounded by the curves shown and whose cross-sections perpendicular to the x-axis are squares with one side in the xy-plane.

Start:
Base is a quarter of a circle of radius 1 .

Start:

Base is between the x-axis and $\mathrm{y}=\operatorname{sqrt}(\mathrm{x})$.

$$
\triangle \Delta
$$

Find the volume of the solid whose base is the region in the xy-plane bounded by the curves $y=x^{2}$ and $y=8-x^{2}$ and whose cross-sections perpendicular to the y-axis are squares with one side in the xy-plane.

$s=$ the difference between the x-values
What are these x -values?
$x=\sqrt{y}$ and $x=-\sqrt{y}$

$$
\begin{aligned}
& V_{\text {slice }}=s^{2} h=(2 \sqrt{y})^{2} \Delta y \\
& V_{\text {slice }}=4 y \Delta y \\
& V_{\substack{\text { bottom } \\
\text { half }}}=4 \int_{0}^{4} y d y \\
& V_{\text {total }}=2 * 4 \int_{0}^{4} y d y \\
& V=8\left[\frac{1}{2} y^{2}\right] \begin{array}{l}
4 \\
0
\end{array} \\
& V=8 * 8=64 \text { units }^{3}
\end{aligned}
$$

The washer method explained en Español just for fun. Interdisciplinary instruction!

