Lesson: _____ Section: 8.1

Using the Definite Integral to Calculate Areas & Volumes (Slice Method)

In chapter 5, we calculated areas using definite integrals. We obtained the integral by slicing a region up into rectangles and then summing up all the slices using a Riemann Sum. By taking the limit as $n \rightarrow \infty$, we were able to find the exact value of the area.

We are now going to calculate VOLUME in a similar fashion using "The Slice Method."

8

Now, express everything Area of $= w \Delta h$ in terms of one variable. one slice Let's get w in terms of h. Area of $= (2\sqrt{49-h^2}) \Delta h$ one slice Area of the semi-circle = $\int 2\sqrt{49 - h^2} dh$ Use the calculator! Area of the \approx **76.969** cm² semi-circle

Volume of one slice = $\pi r^2 \Delta h$

Volume of one slice $= \pi (\sqrt{49 - h^2})^2 \Delta h$ $= \pi (49 - h^2) \Delta h$

Volume of the Solid

$$=\int\limits_0^7\pi(49-h^2)dh$$

$$\pi \left[49h - \frac{h^3}{3} \right]_{\mathbf{0}}^{\mathbf{7}} = (343\pi) - \left(\frac{343\pi}{3} \right)$$

Volume of the solid
$$\approx$$
 718.378 cm^3

Warmup

Find the area of the washer if the hole has a diameter of 2 and the washer has a diameter of 6.

Lesson: _____ Section 8.2 Volumes of Solids of Revolution

To Compute a Volume Using an Integral

- Divide the solid into small pieces whose volume we can easily approximate
- Add the contributions of all the pieces, obtaining a Riemann sum that approximates the total volume
- Take the limit as the number of terms in the sum tends to infinity, giving a definite integral for the total volume.

So we model the volume of one slice, then use an integral to accumulate the slices!

Solids of Revolution

http://demonstrations.wolfram.com/SolidsOfRevolution/

Wolfram Solids of Revolution, 2 examples that I can spin the 3d graph and look

Ex. Take the region bounded by the curve $y = \sqrt{x}$, y = 0, and x = 4 and revolve it around the x-axis. Find the volume of the resulting solid.

Think of this as a ham going through a meat slicer at the deli. Each "slice" is a very thin cylinder! If we could model the volume of one of these slices, we could integrate them all to find the whole ham!

Volume of
a cylinder

$$V_{slice} = \pi r^{2}h = \pi (\sqrt{x})^{2}\Delta x$$

$$V_{slice} = \pi x\Delta x$$

$$V_{slice} = \pi x\Delta x$$

$$V_{solid} = \int_{0}^{4} (\pi x) dx$$

$$= \pi \int_{0}^{4} (x) dx$$

$$= \pi \left[\frac{1}{2}x^{2}\right]_{0}^{4}$$

$$= \pi [8 - 0] = 8\pi \text{ units}^{3}$$

"Disk Method"

Ex. Take the region bounded by the curve $y = x^3$, y = 0, and x = 0, and y = 8 and revolve it around the y-axis. Find the volume of the resulting solid.

Ex. Take the region bounded by the curve $y = x^2$ and y = 2x. and revolve it around the x-axis. Find the volume of the resulting solid.

Visualizing the "Washer Method" Video 30 sec.

Volumes of Solids of Revolution: The "Washer Method"

http://demonstrations.wolfram.com/SolidOfRevolution/

Nice interactive solid of revolution for a difference of two generic functions (below)

1. Write an integral to represent the volume of the solid formed by revolving the region around the x-axis.

$$\int_{a}^{b} \pi \left(f(x)^2 - g(x)^2 \right) dx$$

2. What if we decided to revolve it around the y-axis? Would washers still work? If not, how could we approach this?

The Shell Method

Video 3 min 38 sec.

Find the volume of the solid formed by rotating about the *y* axis the region bounded by $y = x^2$ and $y = \sqrt{x}$

http://www.math.tamu.edu/~tkiffe/calc3/revolution2/revolution2.html I can animate these to demo what the disc and shell method are doing.

Shells Worksheet

1.) Use elements parallel to the axis of revolution (that is, use "shells") to find the volume of the solid generated by *revolving about the y-axis* the region bounded by $y = x^2$, x = 2, and the x - axis.

Shells Worksheet

2.) Use shells to find the volume of the solid generated by revolving about the line x = 4 the region bounded by $y = x^3$ and the lines y = 0 and x = 2.

Solids with Known Cross-Sections

http://demonstrations.wolfram.com/SolidsOfKnownCrossSection/ Visualizing solids with known cross sections

Ex. Find the volume of the solid whose base is the region in the xy-plane bounded by the curves shown and whose cross-sections perpendicular to the x-axis are squares with one side in the xy-plane.

Find the volume of the solid whose base is the region in the xy-plane bounded by the curves $y = x^2$ and $y = 8 - x^2$ and whose cross-sections perpendicular to the y-axis are squares with one side in the xy-plane.

Solids with known cross-sections

The washer method explained en Español just for fun. Interdisciplinary instruction!

