Lesson:
 Section: 1.1 Functions ${ }^{\circ}$ Bhenge

The idea of a function: At Taco Bell, the amount of money we spend is a function of the number of tacos we order. The amount of gas we burn is a function of the number of miles we drive.

The word function expresses the idea that knowledge of one fact tells us another. e.g. If we know the radius of a circle, then circumference is determined. C is a function of r .

If the number of eggs is a function of the number of chickens... what does that mean?

We think of E as a function of C and we call this function f , so we represent this relationship with $E=f(C)$

1

Definition of a function: A rule that takes certain numbers as inputs and assigns to each exactly one definite output number.

The set of all inputs is called the domain of the function. The set of resulting outputs is called the range.

* The domain of a function can be explicitly stated or simply implied.

Sometimes we choose to restrict the domain.
For example, in the chicken problem from before, it does not make sense to have a negative number of chickens, so we restrict the domain to values ≥ 0.

* The number of potatoes I need, p
is a function of the number of fries I want, f. Represent this as a function, q.
* Decode and interpret the meaning of the following:
- $\mathbf{3 0}=\boldsymbol{q}(\mathbf{5 0 0 0})$
- $q(f+1000)=p+10$
- $q^{-1}(50)=7000$

Independent vs. Dependent

Which variable is independent vs. dependent? Sometimes this is obvious, sometimes it's up to us depending on our point of view. Previously, we used the number of chickens to determine the number of eggs $E=f(C)$, but we could use eggs to find chickens as well $C=g(E)$.

If each output is associated with only one input and vice-versa, we call this relationship a one-to-one function (the input \& output are "married"). The significance of this is that E is a function of C , and C is a function of E , so we can go in either direction easily without any ambiguity. This allows us to define a function as well as an inverse for that function.

Note that some quantities are discrete (only certain values e.g. dates) while others are continuous, which means they can be any number. (e.g. time)

5

7

8

If we say "The number of chickens is a function of the number of eggs."

We can get our heads around the meaning of this statement using the rule of four! The key is to determine which variable is the input variable and which is the output.

Graph:

Equation: $\quad c=f(e)$
Numerical: (e, c)
Logical: $\quad e \rightarrow c$

"Intervals" are regions between values (inter vals... between values) Graphical Notation for Intervals:

Algebraic Notation for Intervals (using Inequalities):

$$
5<x \leq 10
$$

Interval Notation:
$(5,10]$

We say that 5 is an "open" endpoint (there is no first value in the interval)

10 is a "closed" endpoint (10 is the last value in the interval)

Ex. $\quad(-5,2] \cap[-2, \infty)=[-2,2]$
the "intersection" of the intervals
Ex. $(-5,2] \cup[-2, \infty)=(-5, \infty)$

1. Is this a function?
2. What is the domain? Range?

Analyzing the Graph of a Function using Interval Notation
3. Over what intervals is it Increasing, Decreasing, Constant
4. Where is the function $>0,<0$?

5. Where is the slope incr. or dear? \qquad When a graph is concave up, its slope is increasing.

When concave down, its slope is decreasing
6. Are there any maxima or minima? Are they relative(local) or global?
7. Is the function even, odd, or neither? Why?

$$
f(-x)=f(x) \quad f(-x)=-f(x)
$$

Difference Quotients

A quotient of 2 differences

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \not \text { Think: } \frac{\Delta y}{\Delta x}
$$

Linear Functions
$y=f(x)=b+m x$
What are the constants in this generic equation? Variables?
Formulas like this in which the constants can take on various values give us a "family" of functions. These constants (called the "parameters") alter the parent function of the family in predictable ways.

The "Point-Slope Form" of a Linear Equation with slope m passing throught he point $\left(x_{1}, y_{1}\right)$

$$
\begin{array}{|c|}
y=y_{1}+m\left(x-x_{1}\right) \\
y=y_{1}+\frac{\Delta y}{\Delta x}(\Delta x) \\
y=y_{1}+\Delta y
\end{array}
$$

This makes sense! y_{1} is my initial value and Δy is how much the function has changed since then.

Ex. Write the equation of a line with a slope of 7 passing through $(5,4)$

$$
y=4+7(x-5)
$$

If \mathbf{y} is directly proportional to x , then $y=k x$
If \mathbf{y} is inversely proportional to x , then $\mathrm{y}=k(1 / x)$
k is called the "constant of proportionality"

Ex. $P=f(g)=\mathbf{5 g}$
What happens to P if I double the input g ?

$$
\text { Ex. } M=f(t)=10(1 / t)
$$

What happens to M if I double the input t ?

Steps:

Solving Polynomial Inequalities

1. Set inequality to zero
2. Factor if possible
3. Set each factor $=0$ to obtain the roots
4. Place the critical number on a number line
5. Test a value in each interval to determine if the function is positive or negative within that interval (These are called "test intervals")
6. Write your solution using interval notation

We need to test to
see on which
intervals this
Ex. $x^{2}+2 x<8$
$x^{2}+2 x-8<0$
$(x+4)(x-2)<0$
$(x+4)=0 \quad(x-2)=0$
$x=-4 \quad x=2$
product is negative!

The solution interval is $(-4,2)$

